Data Breaches, Analysis Frameworks & Threat Modelling

 $\bullet \bullet \bullet$

Sonika Verma CSCD27

Threat Modeling

Advanced Persistent Threats

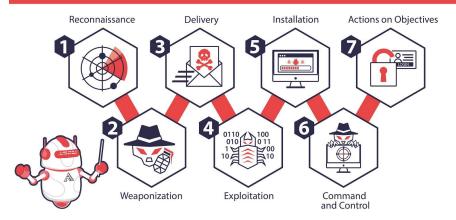
A: Advanced - targeted, coordinated, purposeful
 P: Persistent - repeated, over a period of time
 T: Threat - person(s) with intent, opportunity, and capability

 A stealthy actor which gains unauthorized access to a system/network and is able to remain undetected for an extended period of time

What is Threat Modeling

- identify, communicate, and understand threats and mitigations within the context of protecting something of value
- threat model is a structured representation of all the information that affects the security of an application. In essence, it is a view of the application and its environment through the lens of security

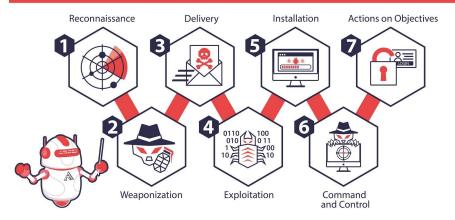
Threat modeling is a process for capturing, organizing, and analyzing all of this information


- enables informed decision-making about application security risks
- produce a prioritized list of security improvements to the concept, requirements, design, or implementation of an application

Case Studies, Analysis & Response Frameworks

Cyber Kill Chain Supply Chain Attack

Case Study: Target


THE CYBER KILL CHAIN

- **Reconnaissance**: research, identification, selection of targets, assess situation
- Weaponization: pairing remote access malware with exploit into a deliverable payload, leverage tools

Cyber Kill Chain

THE CYBER KILL CHAIN

- **Delivery**: transmission of weapon to target
- **Exploitation**: once delivered, the weapon's code is triggered to exploit vulnerable system/applications

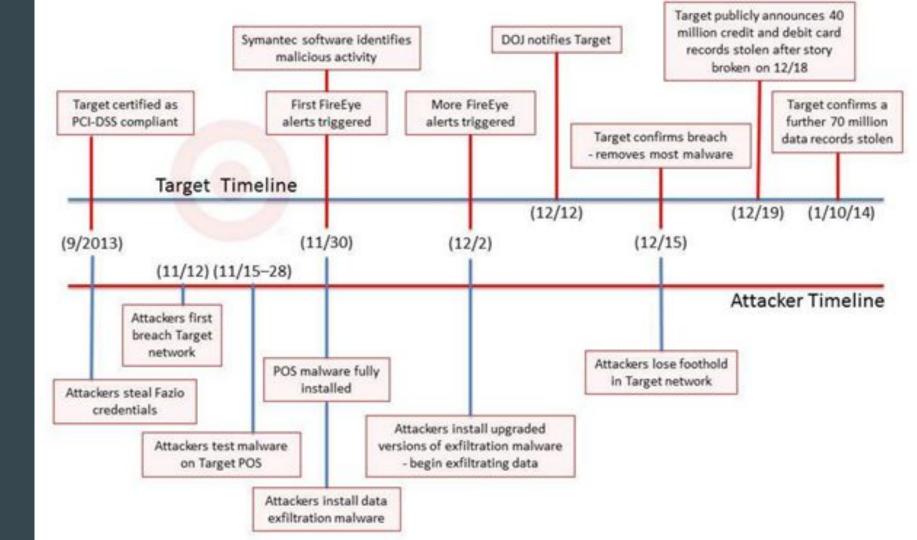
Cyber Kill Chain

Cyber Kill Chain

- **Installation**: weapon installs backdoor on a target's system allowing persistent access
- **Command & Control**: outside server communicates with the weapons providing remote access inside target network
- Actions on Objectives: attacker works to achieve the objective of the intrusion (exfiltration, destruction, intrusion...)

Supply Chain Attack

Case Study: Target


- Cyber attack that seeks to damage an organization by targeting less-secure elements or entities that have access to the system(s)
- Typically within the manufacturing process of a product by installing a rootkit or hardware based spying malware

Target 2013 Data Breach

Case Study

- Dec 2013
- Data breach affecting up to 110 million customers (name, address, contact, financial account)
- Stole financial data, personally identifiable information (PII)
- Removed sensitive information from from network to own
- Stolen data found on black-market forms, card shops
- ~\$252 million in losses

PCI-DSS: Payment Card Industry Data Security Standards

Analysis

Cyber Kill Chain	Target
Reconnaissance	Found information about Fazio via publicly available Internet searches; found information about Target's HVAC facilities, analysis and metadata used to map network
Weaponization	Targeted Fazio, created malware stricken emails, sent malware emails to vendor in spear-phishing attempt, deployed, record passwords
Delivery	Shift focus to Target, weak perimeter security around network and storage that held customer/cardholder data, used stolen credentials, upload RAM scraping malware
Exploitation	Memory scraping and exfiltration malware records financial data through millions of cards used on POS terminals, stored information for later exfiltration
Installation	Attempted to further breach during installation by exploiting default/reused credentials, successful in some privilege escalation and gain additional internal access
Command & Control	Maintained communication with systems for over a month, maintain remote access in network to read, store, transfer data, or even remove data
Actions on Objectives	Transmitted stolen data to external servers, deleted customer information, stolen data offered on Russian dark website for sale

Target 2013 Data Breach

Case Study

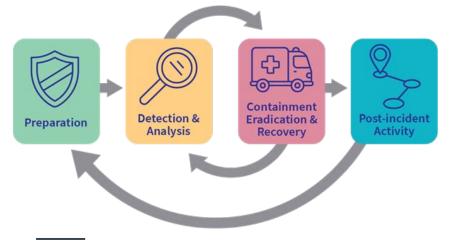
Technical Tools

- Open Source Intelligence
- Citadel malware
- Trojan.POSRAM

Lessons Learned

How do we respond to security incidents?

NIST/SANS Incident Response Point-of-Sale


Case Study: Home Depot

NIST/SANS: Incident Response

Framework

NIST: National Institute of Standards and Technology

SANS: SysAdmin, Audit, Network and Security

NIST/SANS Incident Response

- **Preparation**: well-designed policies to address events, define approach, responsibilities, evaluation, technical processes and tools, training
- **Detection**: detecting first signs of a kill chain, network/communication security, minimize false-positives, threat landscape

NIST/SANS Incident Response

- **Analysis**: event correlation, log configuration and management, synchronizing time, standardizing inputs, determining risk, prioritization, event notification, tracking until resolution
- **Response**: containment, eradication, recovery, isolate damage, restore affected systems
- Review & Improvement: proper documentation, lessons learned, evidence handling, sequence of events, areas of improvement, timing, suggestions, document future changes

Point-of-Sale Attack

Case Study: Home Depot

- Malicious software (malware) to target POS and payment terminals with intent to obtain financial information
- RAM scraping malware (encrypted end-to-end, decrypted in memory)
- > RAT(s!) Remote Access Trojans
- Scans active processes, searches for recognizable (pattern) data

Analysis

Case Study: Home Depot

- Sept 2014 retail data breach
- ~50 million payment cards stolen
 ~53 million email addresses
 mapped to customer info
- ~\$200 million in losses
- 57 class action lawsuits

 Criticized for falling victim to the same kill chain as Target -loss of reputation (business)

Analysis

Incident Response	Home Depot
Preparation	Did not take advantage of known threat landscape, no defined policies for evaluating security practices, lack of secure configuration in POS terminals, lack of network segregation, improper management of identity access and credentials
Detection	No solutions to detect malware installation, did not have regularly scans for vulnerability management, exploited zero-day, lack of security controls around intrusion detection/prevention, were not able to track actors that maintained elevated privileges
Analysis	Implemented anti-virus missing Network Threat Protection feature, systems/staff were not able to correlate information on host-intrusion, running outdated Windows software with known vulnerabilities
Response	Response to attack was largely delayed as it was not detected for about 5 months and continued to run in internal systems under disguise
Review & Improvement	Conducted post-incident

Home Depot 2014 Data Breach

Case Study

Technical Tools

- Custom malware with similarities to that used in Target breach
- BlackPOS
- Alina
- Rescator[dot]cc

Lessons Learned

- ≻ Many!
- > Payment card security standards

STRIDE Third-Party

Case Study: Marriott Hotels

STRIDE

Framework

Created by Microsoft engineers to guide discovery of threats in a system

- **S** spoofing
- **T** tampering
- **R** repudiation
- I information disclosure
- **D** denial of service
- **E** privilege escalation

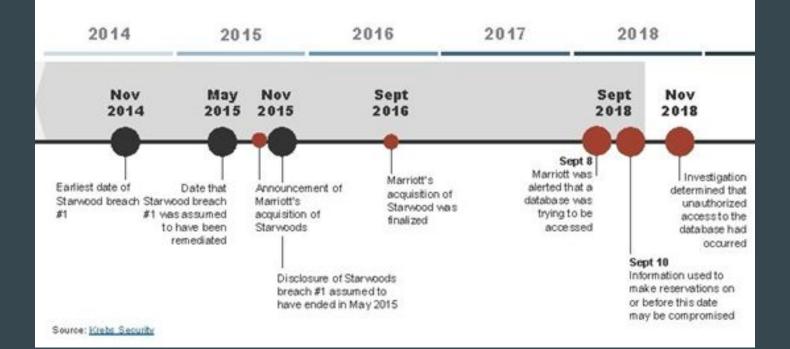
Third-Party Breach

Case Study: Marriott Hotels

- Sensitive data is stolen from a third-party vendor
- Third-parties are compromised and used to breach/access/steal sensitive information from privileged systems

Tutorial: typical attack scenario is gain initial access, elevate privilege

Analysis


Case Study: Marriott Hotels

- September 2018
- Affecting up to 339 million people who stayed at any of their 6700 Starwoods hotel location
- ~7 million hotel guest records (arrival and departure, VIP status, loyalty program numbers)
- Tool flagged a suspicious access request of the guest reservations database
- Copied and encrypted sensitive information, attempted to remove
- €18.4 million fine (originally around €99 million) for violating privacy rights as described under GDPR

GDPR: General Data Protection Regulation

Timeline of Marriott/Starwood breach(s)

The 2018 Marriott breach may be linked to a 2014 vulnerability in Starwood's environment, disclosed shortly after acquisition was announced.

Analysis

STRIDE	Marriott Hotels
Spoofing	Attackers were able to misuse stolen/phished credentials to make database queries from authenticated but non-authorized user accounts
Tampering	Attackers were able to access database information, encrypt files, take some steps towards deleting some of those tables
Repudiation	Acting as users in the acquired systems, attackers were able to better disguise themselves and have activities go unnoticed for a long period of time
Information Disclosure	Attackers were able to access and exfiltrate customer information and data
Denial of Service	Had the deletion attempt been successful, hotel operations would have been compromised by lacking the information they need for regular procedures Resources needed to recover from attack would slow down or hinder standard operations
Elevation of Privileges	Attackers were able to made database queries on authenticated accounts despite not being the rightful owner

Marriott 2018 Data Breach

Case Study

Technical Tools

• MimiKatz RAT

Lessons Learned

- Security important!
- Security awareness

OWASP TOP 10 Watering Hole

Case Study: VOHO Campaign

OWASP Top 10

Framework

Open Web Application Security Project (open-community model)

- 1. Injection
- 2. Broken Authentication
- 3. Sensitive Data Exposure
- 4. XML External Entities
- 5. Broken Access Control
- 6. Security Misconfigurations
- 7. Cross-Site Scripting
- 8. Insecure Deserialization
- 9. Using Components with Known Vulnerabilities
- 10. Insufficient Logging & Monitoring

Watering Hole Attack

Case Study: VOHO Campaign

- Computer attack strategy in which an attacker guesses or observes which websites an organization often uses and infects them with malware
- Infecting portable devices outside of organization network
- Could be targeted towards a specific predator
- Infect and compromise user to then be led to larger organization

Analysis

Case Study: VOHO Campaign

- June 2012
- First published by RSA
- Targeted USA operating organizations in the business-political sector (industry-specific attack)
- More than 32,000 hosts from over 700 organizations were redirected to exploit site
- ~4000 machines downloaded a malicious payload delivered to unsuspecting users from legitimate websites

VOHO Campaign 2012 Data Breach

Case Study

Technical Tools

• Gh0st RAT by malicious JavaScript delivery

Lessons Learned

> UBEA

PASTA Insider Threats

Case Study: WireCard Inc.

PASTA

Framework

Process for Attack Simulation and Threat Analysis

- 1. Define business objectives
- 2. Define technical scope of assets and components
- 3. Application decomposition and identify application controls
- 4. Vulnerability detection
- 5. Attract enumeration and modeling
- 6. Risk analysis and development of countermeasures

Insider Threats

Case Study: WireCard Inc.

- Security risk that originates
 within the targeted organization
- Internal trusted actors
- Turncloack: insider who is maliciously stealing data Pawns: regular employee's that make a mistake which is exploited by a bad actor
- ➢ Social Engineering

Analysis

Case Study: WireCard Inc.

German financial-tech company

- 2016 2021
- Several audits alleging fraudulent activity
- WireCard continuously denied claims and forged reports
- Money laundering, insider trading, defrauding external contracted companies, forging audit and financial record reports
- Hiring external actors

WireCard Inc.

Case Study

- Security is meant to serve the business
- Business goals are a strong indication on assets of values, sensitive data, crucial operations and procedures

Lessons Learned

- Continuous monitoring
- > Zero-trust
- > Auditing
- Security awareness

MITRE ATT&CK

Reconnaissance	Resource Development 7 techniques	Initial Access 9 techniques	Execution 12 techniques	Persistence 19 techniques	Privilege Escalation 13 techniques	Defense Evasion 40 techniques	Credential Access 15 techniques	Discovery 29 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command and Control 16 techniques	Exfiltration 9 techniques	Impact 13 techniques
Active Scanning (2)	Acquire Infrastructure (6)	Drive-by Compromise	Command and Scripting	Account Manipulation (4)	Abuse Elevation Control	Abuse Elevation Control Mechanism (4)	Adversary-in- the-Middle (2)	Account Discovery (4)	Exploitation of Remote	Adversary-in- the-Middle (2)	Application Layer	Automated Exfiltration (1)	Account Access Removal
Gather Victim Host Information (4)	Compromise Accounts (2)	Exploit Public- Facing	Interpreter (8) Container	BITS Jobs	Mechanism (4)	Access Token Manipulation (5)	Brute Force (4)	Application Window Discovery	Services	Archive Collected	Protocol (4) Communication	Data Transfer Size Limits	Data Destruction
Gather Victim Identity Information (3)	Compromise	Application	Administration	Boot or Logon Autostart	Manipulation (5)	BITS Jobs	Credentials from Password II	Browser Bookmark Discovery	Spearphishing	Data (3)	Through Removable	Exfiltration	Data Encrypted for Impact
Gather Victim Network	Infrastructure (6) Develop	External Remote Services	Deploy Container	Execution ₍₁₅₎ Boot or Logon	Boot or Logon Autostart Execution (15)	Build Image on Host	Stores (5) Exploitation for	Cloud Infrastructure Discovery	Lateral Tool Transfer	Audio Capture Automated	Media Data	Over Alternative Protocol (3)	Data Manipulation (3)
Information (6)	Capabilities (4)	Hardware	Exploitation for Client Execution	Initialization II Scripts (5)	Boot or Logon	Deobfuscate/Decode Files or Information	Credential Access	Cloud Service	Remote Service	Collection	Encoding (2)	Exfiltration	Defacement (2)
Gather Victim Org Information (4)	Establish Accounts ₍₂₎	Additions Phishing (3)	Inter-Process Communication (2)	Browser Extensions	Initialization Scripts (5)	Deploy Container	Forced Authentication	Dashboard Cloud Service	Session Hijacking ₍₂₎	Browser Session Hijacking	Data Obfuscation (3)	Over C2 Channel	Disk Wipe (2)
Phishing for Information (3)	Obtain Capabilities ₍₆₎	Replication	Native API	Compromise	Create or Modify System	Direct Volume Access	Forge Web	Discovery	Remote Services (6)	Clipboard Data	Dynamic Resolution (3)	Exfiltration Over Other	Endpoint Denial of Service (4)
Search Closed Sources (2)	Stage Capabilities (5)	Through Removable Media	Scheduled Task/Job (6)	Client Software Binary	Process (4) Domain Policy	Domain Policy Modification (2)	Credentials (2)	Cloud Storage Object Discovery	Replication Through	Data from Cloud Storage	Encrypted Channel (2)	Network Medium (1)	Firmware Corruption
Search Open		Supply Chain	Shared Modules	Create Account (3)	Modification (2)	Execution Guardrails (1)	Capture (4)	Container and Resource Discovery	Removable Media	Object	Fallback	Exfiltration Over Physical	Inhibit System
Technical Databases (5)		Compromise (3)	Software Deployment Tools	Create or Modify System	Escape to Host Event Triggered	Exploitation for Defense Evasion	Modify Authentication II Process (4)	Domain Trust Discovery	Software Deployment	Data from Configuration Repository (2)	Channels Ingress Tool	Medium (1) Exfiltration	Recovery Network Denial of
Search Open Websites/Domains (2)		Relationship	System Services (2)	Process (4)	Execution (15)	File and Directory Permissions	Network	File and Directory	Tools	Data from	Transfer	Over Web Service (2)	Service (2)
Search Victim-Owned		Valid Accounts (4)	User Execution (3)	Event Triggered Execution (15)	Exploitation for Privilege	Modification (2)	Sniffing	Discovery	Taint Shared Content	Information Repositories (3)	Multi-Stage Channels	Scheduled	Resource Hijacking
Websites			Windows Management	External Remote Services	Escalation Hijack	Hide Artifacts (9) Hijack Execution	OS Credential Dumping (8)	Group Policy Discovery	Use Alternate Authentication	Data from Local System	Non-Application Layer Protocol	Transfer Transfer Data	Service Stop
			Instrumentation	Hijack	Execution Flow (11)	Flow (11)	Steal Application	Scanning	Material (4)	Data from	Non-Standard	to Cloud Account	System Shutdown/Reboot
				Execution II Flow (11)	Process	Impair Defenses (9) II Ac	Access Token	Network Share Discovery		Network Shared Drive	Port		
				Implant Internal Image	Injection (11) Scheduled	Indicator Removal on Host (6)	Steal or Forge Kerberos Tickets (4)	Network Sniffing		Data from Removable	Protocol Tunneling		
				Modify	Task/Job (6)	Indirect Command Execution	Steal Web	Password Policy Discovery		Media	Proxy (4)		
				Authentication II Process (4)	Valid Accounts (4)	Masquerading (7)	Session Cookie	Peripheral Device Discovery		Data Staged (2)	Remote Access Software		
				Office Application	22	Modify Authentication Process (4)	Two-Factor Authentication	Permission Groups	í.	Collection (3)	Traffic Signaling (1)		
				Startup (6)		Modify Cloud Compute	Interception	Discovery (3)	1	Input Capture ₍₄₎	Web Service (3)	2	
				Pre-OS Boot (5)		Infrastructure (4)	Unsecured Credentials (7)	Process Discovery		Screen Capture			
				Task/Job (6)		Modify Registry Modify System		Query Registry Remote System		Video Capture			
						In solly system		nonote oyatem					

Lessons Learned

Recent Data Breaches

- 1. 2018 TicketMaster (chatbot)
- 2. 2020 LinkedIn (leaked user data)
- 3. 2020 Audi-Volkswagen (publicly available data)
- 4. 2020 SolarWinds (supply-chain, backdoors, code-injection)
- 5. 2021 T-Mobile (cyber attack)
- 6. 2021 Twitch (data breach / leak)

The CSCD27 Framework

Case Study: You!

Security Learnings

- 1. Applied Cryptography
 - a. Cryptography protocols
 - b. Encrypted data
- 2. Network Security
 - a. Communication protocols
 - b. TCP/IP stack
 - c. Security architecture
- 3. System Security
 - a. Secure coding
 - b. Web security
 - c. Malware

Be aware, be secure!